AER 821 Spacecraft Attitude Dynamics and Control

Review of rotational dynamics: Euler’s equations, major/minor axis spins, asymptotic stability, role of energy dissipation, integrals of motion. Space-Vehicle Attitude Dynamics: rigid-body motion, typical configurations (non-spinning, spinning, momentum-bias), applications. Applied Classical Control: Discrete-time control systems, real-time considerations, bandwidth, sampling, other practical considerations. Basics of Modern Control Theory: State-space formulations, LQR/LQG controllers, comparison to classical methods. Space-Vehicle Attitude Control: Typical sensor and actuator devices, strategies for attitude control, gravity gradient control, effects of flexibility. Lect: 3 hrs./Lab: 1 hr. Prerequisites: AER 509 and (AER 716 or AER 721) Course Weight: 1.00 Billing Units: 1





There are no comments for this course.